Abundant M-fractional optical solitons to the pertubed Gerdjikov–Ivanov equation treating the mathematical nonlinear optics
نویسندگان
چکیده
In this paper, the perturbed Gerdjikov–Ivanov (GI) equation using a truncated M-fractional derivative is studied in mathematical nonlinear optics. We are explored its novel dark and other soliton solutions compared them with existing results. To obtain objective, two particular methods, modified extended $$\tanh$$ expansion method $$Exp_a$$ function method, implemented. exercise, an arrangement of exact solitons received as well verified by utilizing symbolic soft computations. The dynamical characteristics obtained results, along fractional parameter, also discussed via three-dimensional graphs. These suggested that employed methods impressive, determined smooth to many methods. work paper high importance regarding applications photonic crystal fibers physics.
منابع مشابه
Nonlinear Optics and Solitons
.........................................................................................1
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
Fractional Schrödinger equation in optics.
In quantum mechanics, the space-fractional Schrödinger equation provides a natural extension of the standard Schrödinger equation when the Brownian trajectories in Feynman path integrals are replaced by Levy flights. Here an optical realization of the fractional Schrödinger equation, based on transverse light dynamics in aspherical optical cavities, is proposed. As an example, a laser implement...
متن کاملSolitons for the nonlinear Klein-Gordon equation
In this paper we study existence and orbital stability for solitary waves of the nonlinear Klein-Gordon equation. The energy of these solutions travels as a localized packet, hence they are a particular type of solitons. In particular we are interested in sufficient conditions on the potential for the existence of solitons. Our proof is based on the study of the ratio energy/charge of a functio...
متن کاملThe Nonlinear Schroedinger equation: solitons dynamics
In this paper we investigate the dynamics of solitons occurring in the nonlinear Schroedinger equation when a parameter h → 0. We prove that under suitable assumptions, the the soliton approximately follows the dynamics of a point particle, namely, the motion of its barycenter q h (t) satisfies the equation ¨ q h (t) + ∇V (q h (t)) = H h (t) where sup t∈R |H h (t)| → 0 as h → 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optical and Quantum Electronics
سال: 2021
ISSN: ['1572-817X', '0306-8919']
DOI: https://doi.org/10.1007/s11082-021-03394-w